182 research outputs found

    Remote Electrical Stimulation by Means of Implanted Rectifiers

    Get PDF
    Miniaturization of active implantable medical devices is currently compromised by the available means for electrically powering them. Most common energy supply techniques for implants – batteries and inductive couplers – comprise bulky parts which, in most cases, are significantly larger than the circuitry they feed. Here, for overcoming such miniaturization bottleneck in the case of implants for electrical stimulation, it is proposed to make those implants act as rectifiers of high frequency bursts supplied by remote electrodes. In this way, low frequency currents will be generated locally around the implant and these low frequency currents will perform stimulation of excitable tissues whereas the high frequency currents will cause only innocuous heating. The present study numerically demonstrates that low frequency currents capable of stimulation can be produced by a miniature device behaving as a diode when high frequency currents, neither capable of thermal damage nor of stimulation, flow through the tissue where the device is implanted. Moreover, experimental evidence is provided by an in vivo proof of concept model consisting of an anesthetized earthworm in which a commercial diode was implanted. With currently available microelectronic techniques, very thin stimulation capsules (diameter <500 ”m) deliverable by injection are easily conceivable

    Cellular Imaging of Human Atherosclerotic Lesions by Intravascular Electric Impedance Spectroscopy

    Get PDF
    Background: Newer techniques are required to identify atherosclerotic lesions that are prone to rupture. Electric impedance spectroscopy (EIS) is able to provide information about the cellular composition of biological tissue. The present study was performed to determine the influence of inflammatory processes in type Va (lipid core, thick fibrous cap) and Vc (abundant fibrous connective tissue while lipid is minimal or even absent) human atherosclerotic lesions on the electrical impedance of these lesions measured by EIS. Methods and Results: EIS was performed on 1 aortic and 3 femoral human arteries at 25 spots with visually heavy plaque burden. Severely calcified lesions were excluded from analysis. A highly flexible micro-electrode mounted onto a balloon catheter was placed on marked regions to measure impedance values at 100 kHz. After paraffin embedding, visible marked cross sections (n = 21) were processed. Assessment of lesion types was performed by Movats staining. Immunostaining for CD31 (marker of neovascularisation), CD36 (scavenger cells) and MMP-3 (matrix metalloproteinase-3) was performed. The amount of positive cells was assessed semi-quantitatively. 15 type Va lesions and 6 type Vc lesions were identified. Lesions containing abundant CD36-, CD31- and MMP-3-positive staining revealed significantly higher impedance values compared to lesions with marginal or without positive staining (CD36+455650 V vs. CD36- 346653 V, p = 0.001; CD31+436643 V vs. CD31- 340655 V, p = 0.001; MMP-3+ 400668 V vs. MMP-3- 323633 V, p = 0.03)

    Evaluating the Viscoelastic Properties of Tissue from Laser Speckle Fluctuations

    Get PDF
    Most pathological conditions such as atherosclerosis, cancer, neurodegenerative, and orthopedic disorders are accompanied with alterations in tissue viscoelasticity. Laser Speckle Rheology (LSR) is a novel optical technology that provides the invaluable potential for mechanical assessment of tissue in situ. In LSR, the specimen is illuminated with coherent light and the time constant of speckle fluctuations, τ, is measured using a high speed camera. Prior work indicates that τ is closely correlated with tissue microstructure and composition. Here, we investigate the relationship between LSR measurements of τ and sample mechanical properties defined by the viscoelastic modulus, G*. Phantoms and tissue samples over a broad range of viscoelastic properties are evaluated using LSR and conventional mechanical testing. Results demonstrate a strong correlation between τ and |G*| for both phantom (r = 0.79, p <0.0001) and tissue (r = 0.88, p<0.0001) specimens, establishing the unique capability of LSR in characterizing tissue viscoelasticity

    Focus on the research utility of intravascular ultrasound - comparison with other invasive modalities

    Get PDF
    Intravascular ultrasound (IVUS) is an invasive modality which provides cross-sectional images of a coronary artery. In these images both the lumen and outer vessel wall can be identified and accurate estimations of their dimensions and of the plaque burden can be obtained. In addition, further processing of the IVUS backscatter signal helps in the characterization of the type of the plaque and thus it has been used to study the natural history of the atherosclerotic evolution. On the other hand its indigenous limitations do not allow IVUS to assess accurately stent struts coverage, existence of thrombus or exact site of plaque rupture and to identify some of the features associated with increased plaque vulnerability. In order this information to be obtained, other modalities such as optical coherence tomography, angioscopy, near infrared spectroscopy and intravascular magnetic resonance imaging have either been utilized or are under evaluation. The aim of this review article is to present the current utilities of IVUS in research and to discuss its advantages and disadvantages over the other imaging techniques

    Successful Stepwise Development of Patient Research Partnership: 14 years’ experience of actions and consequences in Outcome Measures in Rheumatology (OMERACT)

    Get PDF
    There is increasing interest in making patient participation an integral component of medical research. However, practical guidance on optimizing this engagement in healthcare is scarce. Since 2002, patient involvement has been one of the key features of the Outcome Measures in Rheumatology (OMERACT) international consensus effort. Based on a review of cumulative data from qualitative studies and internal surveys among OMERACT participants, we explored the potential benefits and challenges of involving patient research partners in conferences and working group activities. We supplemented our review with personal experiences and reflections regarding patient participation in the OMERACT process. We found that between 2002 and 2016, 67 patients have attended OMERACT conferences, of whom 28 had sustained involvement; many other patients contributed to OMERACT working groups. Their participation provided face validity to the OMERACT process and expanded the research agenda. Essential facilitators have been the financial commitment to guarantee sustainable involvement of patients at these conferences, procedures for recruitment, selection and support, and dedicated time allocated in the program for patient issues. Current challenges include the representativeness of the patient panel, risk of pseudo-professionalization, and disparity in patients’ and researchers’ perception of involvement. In conclusion, OMERACT has embedded long-term patient involvement in the consensus-building process on the measurement of core health outcomes. This integrative process continues to evolve iteratively. We believe that the practical points raised here can improve participatory research implementation
    • 

    corecore